Ir/SiO_2 as a highly active catalyst for the selective reduction of NO with CO in the presence of O_2 and SO_2

Masaaki Haneda,*a Tomohiro Yoshinari,^b Kazuhito Sato,^b Yoshiaki Kintaichi^a and Hideaki Hamada^a

^a Research Institute for Green Technology, National Institute of Advanced Industrial Science and

Technology (AIST), AIST Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan

^b Petroleum Energy Center, Tsukuba Laboratory, AIST Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan

Received (in Cambridge, UK) 19th August 2003, Accepted 26th September 2003 First published as an Advance Article on the web 15th October 2003

Coexisting SO₂ considerably enhanced the catalytic activity of Ir/SiO₂ for NO reduction with CO in the presence of O₂ because of the formation of a *cis*-type coordinated species of NO and CO to one iridium atom ($Ir < {}^{NO}_{CO}$), a possible reaction intermediate leading to N₂ formation.

Selective reduction of NO in oxidizing atmospheres is an increasing focus of research attention, since it has potential as a practical measure for removing NOx emitted from diesel engines, lean-burn engines and combustors. In this regard, a great number of studies have been made recently to use hydrocarbons as reductant for the selective reduction of NO.1 On the other hand, H₂ and CO have not until recently been regarded as effective reductants. In 1997, Yokota et al.² reported the activity of Pt/mordenite for NO reduction with H₂ in the presence of O_2 at around 423 K. Several researchers then studied the selective reduction of NO with H2 over Pt and Pdbased catalysts.³⁻⁴ As for NO reduction with CO, Ogura et al.⁵ investigated the activity of supported iridium catalysts and found that NO can successfully be reduced to N2 with CO over Ir/silicalite catalyst and that the catalytic activity is minimally influenced by coexisting SO2. We have recently discovered that Ir/SiO2 and Rh/SiO2 show marked catalytic activity with respect to NO reduction with H₂ in the presence of O₂ and SO₂.⁶ The most significant feature of this reaction is that the presence of SO₂, which normally poisons catalytic reactions, promotes NO reduction in the presence of O_2 . However, no evidence has been obtained up to now that explains this promoting effect of SO₂. In this communication, we report that CO, which is a more practical reductant than H₂, also serves as an effective reductant for NO reduction over Ir/SiO₂ catalyst in the presence of O₂ and SO₂. A mechanistic role for SO₂ is also proposed based on in situ IR measurements.

Silica-supported noble metal (Pt, Rh, Pd, Ir) catalysts were prepared by impregnating SiO₂ (Fuji Silysia Chemicals, Cariact G-10, 300 m² g⁻¹) with aqueous solutions of [Pt(NH₃)₄](NO₃)₂,

 $Rh(NO_3)_2$, $[Pd(NH_3)_4](NO_3)_2$ or $H_2IrCl_6 \cdot 6H_2O$. For comparison, Ir/Al₂O₃ was also prepared by impregnating Al₂O₃ (Mizusawa Chemicals, GB-45, 190 m² g⁻¹) with an aqueous solution of $H_2IrCl_6 \cdot 6H_2O$. The impregnated catalyst precursors were dried at 383 K and finally calcined at 873 K for 8 h in air. The loading of noble metals was fixed at 5 wt%. Their catalytic activity was evaluated using a fixed-bed continuous flow reactor. A reaction gas mixture containing NO (1000 ppm), CO (6000 ppm), O₂ (0 or 5%), SO₂ (0 or 20 ppm) and H₂O (6%) diluted in He as the balance gas was fed through a catalyst (0.04 g), pretreated in situ in a flow of 0.6% H₂/6% H₂O/He at 873 K for 1 h, at a rate of 90 cm³ min⁻¹ (SV = $ca. 75000 \text{ h}^{-1}$). The effluent gas was analyzed by two on-line gas chromatographs equipped with a Molecular Sieve 5A column (for the analysis of N_2 and CO) and a Porapak Q column (for analysis of $\dot{CO_2}$ and N_2O). The reaction temperature was changed from 873 to 473 K in 50 K steps and the steady-state catalytic activity was measured at each temperature. In situ IR spectra were recorded with a Nicolet NEXUS 670 FT-IR spectrometer equipped with a diffuse reflectance high-temperature cell (Spectra Tech) connected to a gas flow system.⁶ Various gas mixtures were fed to the catalyst (15 mg), which was pretreated in situ in a flow of 1% H₂/6% H₂O/He at 873 K for 1 h, at a flow rate of 30 cm³ min⁻¹

Table 1 summarizes the catalytic activity of the silicasupported noble metal catalysts for NO reduction by CO in the presence of O₂ either with or without 20 ppm SO₂. The reproducibility of the catalytic activity data was found to be quite good in this study. Pt/SiO₂, Rh/SiO₂ and Pd/SiO₂ showed little catalytic activity with respect to NO reduction to N₂/N₂O over the entire temperature range, irrespective of coexisting SO₂. The performance of Ir/SiO₂, on the other hand, was quite different. Although Ir/SiO₂ showed no NO reduction activity over the entire temperature range in the absence of SO₂, the presence of SO₂ was found to promote NO reduction drastically. At 623 K, for instance, the presence of 20 ppm SO₂ increased NO conversion to N₂/N₂O from 0% to 51%. The

Table 1 NO reduction with CO over supported noble metal (5 wt%) catalysts

			NO conversion to N_2 (N_2O) (%)					
	O ₂ (%)	SO ₂ (ppm)	473 K	573 K	623 K	673 K	723 K	773 K
Pt/SiO ₂	5	0	0 (1.2)	0 (1.3)	0 (0.3)	0 (0.2)	0 (0)	0 (0)
-	5	20	0(1.0)	0 (0.7)	0 (0.4)	0 (0.6)	0 (0.3)	0 (0.2)
Rh/SiO ₂	5	0	0(0.7)	0(0.2)	0 (0.2)	0 (0)	0 (0)	0 (0)
-	5	20	0 (0.6)	0(1.1)	0 (1.7)	0 (1.3)	0 (0.6)	0 (0.2)
Pd/SiO ₂	5	0	0 (0.2)	0 (0.2)	0 (0)	0 (0)	0 (0)	0 (0)
2	5	20	0(0.7)	0(1.2)	0 (0.7)	0 (0.5)	0 (0.2)	0 (0)
Ir/SiO ₂	0	0	7.4 (2.2)	54 (3.6)	61 (2.0)	43 (1.5)	44 (0)	79 (0)
-	5	0	0 (0)	0 (0)	0 (0)	0.7(0.2)	0 (0)	0 (0)
	5	20	0(1.1)	17 (4.9)	45 (6.3)	16 (2.2)	6.9 (0.7)	1.4 (0.4)
Ir/Al ₂ O ₃	0	0	0.8 (0.9)	35 (4.6)	30 (2.8)	83 (4.8)	84 (1.2)	42 (0)
2 9	5	0	0 (0)	0 (0)	1.4 (0.2)	5.7 (0.4)	12 (0.7)	7.3 (0.6)
	5	20	0 (0.6)	0 (0.6)	2.8 (1.1)	15 (1.9)	6.1 (1.1)	2.4 (0.3)

notable difference between NO reduction with CO and that with H_2 , which we have reported before, is that Rh/SiO_2 does not work as an effective catalyst for NO reduction with CO in the presence of O_2 and SO_2 . In Table 1 is also given the activity of Ir/Al_2O_3 catalyst. It is noteworthy that the catalytic activity of Ir/Al_2O_3 was only minimally affected by the presence of SO_2 , although a slight downward shift of the effective temperature window was observed. Thus, SiO_2 appears to be a more effective support than Al_2O_3 for NO reduction with CO in the presence of O_2 and SO_2 .

Since the promotional effect of SO_2 may be related to the change in the supported iridium species, the response of the NO conversion to N₂/N₂O over Ir/SiO₂ to intermittent feed of 20 ppm SO₂ was examined at 623 K. The results are given in Fig. 1. It is clear that the conversion of NO was rapidly increased after introduction of SO₂. The subsequent removal of SO₂ caused a gradual decrease in the conversion of NO, after which the activity returned to its initial steady state in 4 h. This means that the effect of coexisting SO₂ was almost completely lost after removal of SO₂ from the reaction gas, suggesting that the catalytically active sites for NO reduction are created by interaction with coexisting SO₂ on the catalyst surface.

To investigate the effect of SO_2 on the behavior of surfaceadsorbed species formed during NO reduction with CO on the supported iridium catalysts, *in situ* IR spectra were measured at 473 K, at which the catalytic activity is low enough to observe surface intermediates due to their low reactivity. Fig. 2

Fig. 1 Response of NO conversion to intermittent feed of 20 ppm SO₂ over 5 wt% Ir/SiO₂ at 623 K. Conditions: NO = 1000 ppm, CO = 6000 ppm, O₂ = 5%, SO₂ = 0 or 20 ppm, H₂O = 6%, catalyst weight = 0.04 g, gas flow rate = 90 cm³min⁻¹.

Fig. 2 In situ IR spectra of adsorbed species on 5 wt% Ir/SiO_2 and 5 wt% Ir/Al_2O_3 in a flow of (a) NO, (b) CO, (c) NO + CO, (d) NO + CO + O_2 and (e) NO + CO + O_2 + SO₂ at 473 K for 0.5 h.

illustrates in situ IR spectra of adsorbed species on Ir/SiO2 and Ir/Al₂O₃ contacted with a series of gas flows containing some of the selected gas components. In flowing NO/He (spectrum a), an IR band assignable to NO linearly adsorbed onto iridium (Ir- $NO^{\delta+}$)⁷ was detected at 1842 cm⁻¹ in both catalysts. Exposure to CO also gave an IR band at 2080 cm⁻¹ due to CO species being adsorbed onto iridium (Ir-CO)7 (spectrum b). When a mixture of NO + CO was introduced (spectrum c), a shift of the 1842 cm⁻¹ band to 1804 cm⁻¹ as well as the appearance of a new IR band at 2042 $\rm cm^{-1}$ was observed. The shift of the NO band to a lower wavenumber due to surface interaction with CO was reported for $Rh/Al_2O_3{}^8$ and $Ir/Al_2O_3{}^9$ This shift is explained by the perturbing effect of adsorbed CO, suggesting the formation of cis-type coordinated species of NO and CO with one metal atom. $(M <_{CO}^{NO})^{8,9}$ Accordingly, the IR bands at 1804 and 2042 cm^{-1} observed here can be attributed to the formation of $Ir <_{CO}^{NO}$ species.

The $M \leq_{CO}^{NO}$ species would be decomposed to give CO₂ and nitride (M–N), which can react with NO and CO to produce N₂O and NCO, respectively.⁹ In fact, as can be seen in Fig. 2 (spectrum c), a weak IR band due to the NCO species adsorbed onto iridium (Ir–NCO)¹⁰ was detected at 2176 cm⁻¹ for both catalysts. It is noteworthy that Ir/SiO₂ and Ir/Al₂O₃ showed high activity for NO reduction by CO in the absence of O₂ and SO₂ (Table 1). This suggests that the $Ir <_{CO}^{NO}$ species is a possible intermediate for NO reduction by CO. The fact that the bands at 1804 and 2042 cm⁻¹ disappeared completely on the addition of O₂ to the NO + CO mixture (spectrum d) also supports this idea, since NO reduction by CO did not take place over Ir/SiO₂ and Ir/Al₂O₃ in the presence of O₂ (Table 1).

Although almost the same surface species were detected for Ir/SiO₂ and Ir/Al₂O₃ catalysts in NO reduction by CO in the absence of SO₂, addition of SO₂ to the reaction gas caused different features to appear in the IR spectra (spectrum e). For Ir/SiO₂ catalyst, the presence of coexisting SO₂ caused a shift of the 1842 cm⁻¹ band to lower wavenumbers as well as the appearance of IR bands at 2042 and 2073 cm⁻¹. These band features are consistent with those obtained in the flow of NO + CO (spectrum c). Namely, the $Ir <_{CO}^{NO}$ surface species can be produced during NO reduction by CO in the presence of O2 and SO₂. Therefore, the coexisting SO₂ is likely to play an important role in the formation of the $Ir < \frac{NO}{CO}$ surface species, resulting in the significant activityenhancement described above (Table 1). On the other hand, no change in the frequency of the 1842 cm⁻¹ band was observed for Ir/Al2O3 in the presence of coexisting SO₂, nor the absorption band of the $Ir \leq_{CO}^{NO}$ species. Instead, the presence of SO₂ gave rise to SO₄²⁻ species (1356 cm⁻¹) and NO_3^- species (1301, 1553, 1580 and 1618 cm⁻¹) on Al_2O_3 .

In summary, Ir/SiO_2 shows excellent activity with respect to NO reduction with CO in the presence of O_2 and SO_2 . Although the details of the reaction mechanism are not yet known, coexisting SO_2 appears to play an important role in creating the sites for formation of the $Ir <_{CO}^{NO}$ surface species as a reaction intermediate.

Notes and references

- 1 H. Hamada, Catal. Today, 1994, 22, 21.
- 2 K. Yokota, M. Fukui and T. Tanaka, Appl. Surf. Sci., 1997, 121/122, 273.
- 3 R. Burch, A. A. Shestov and J. A. Sullivan, J. Catal., 1999, 188, 69.4 A. Ueda, T. Nakao, M. Azuma and T. Kobayashi, Catal. Today, 1998,
- **45**, 135.
- 5 M. Ogura, A. Kawamura, M. Matsukata and E. Kikuchi, *Chem. Lett.*, 2000, 146.
- 6 T. Yoshinari, K. Sato, M. Haneda, Y. Kintaichi and H. Hamada, *Appl. Catal.B*, 2003, **41**, 157.
- 7 F. Solymosi and J. Raskó, J. Catal., 1980, 62, 253.
- 8 H. Arai and H. Tominaga, J. Catal., 1976, 43, 131.
- 9 F. Solymosi and J. Raskó, J. Catal., 1980, 63, 217.
- 10 J. Raskó and F. Solymosi, J. Catal., 1981, 71, 219.